منابع مشابه
The centralizer of an element in an endomorphism ring
We prove that the centralizer Cφ ⊆ HomR(M,M) of a nilpotent endomorphism φ of a finitely generated semisimple left R-module RM (over an arbitrary ring R) is the homomorphic image of the opposite of a certain Z(R)-subalgebra of the full m×m matrix algebra Mm×m(R[t]), where m is the dimension (composition length) of ker(φ). If R is a finite dimensional division ring over its central subfield Z(R)...
متن کاملProjectivity and flatness over the endomorphism ring of a finitely generated module
Let A be a ring, and Λ a finitely generated A-module. We give necessary and sufficient conditions for projectivity and flatness of a module over the endomorphism ring of Λ.
متن کاملQuasihomogeneity of curves and the jacobian endomorphism ring
We give a quasihomogeneity criterion for Gorenstein curves. For complete intersections, it is related to the first step of Vasconcelos’ normalization algorithm. In the process, we give a simplified proof of the Kunz–Ruppert criterion.
متن کاملRigorous Computation of the Endomorphism Ring of a Jacobian
We describe several improvements to algorithms for the rigorous computation of the endomorphism ring of the Jacobian of a curve defined over a number field.
متن کاملGroup Ring Module
The theory of groups, rings and modules is developed to a great depth. Group theory results include Zassenhaus’s theorem and the Jordan-Hoelder theorem. The ring theory development includes ideals, quotient rings and the Chinese remainder theorem. The module development includes the Nakayama lemma, exact sequences and Tensor products.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 1965
ISSN: 0026-2285
DOI: 10.1307/mmj/1028999310